RNA-Seq Analysis of Differential Splice Junction Usage and Intron Retentions by DEXSeq
نویسندگان
چکیده
Alternative splicing is an important biological process in the generation of multiple functional transcripts from the same genomic sequences. Differential analysis of splice junctions (SJs) and intron retentions (IRs) is helpful in the detection of alternative splicing events. In this study, we conducted differential analysis of SJs and IRs by use of DEXSeq, a Bioconductor package originally designed for differential exon usage analysis in RNA-seq data analysis. We set up an analysis pipeline including mapping of RNA-seq reads, the preparation of count tables of SJs and IRs as the input files, and the differential analysis in DEXSeq. We analyzed the public RNA-seq datasets generated from RNAi experiments on Drosophila melanogaster S2-DRSC cells to deplete RNA-binding proteins (GSE18508). The analysis confirmed previous findings on the alternative splicing of the trol and Ant2 (sesB) genes in the CG8144 (ps)-depletion experiment and identified some new alternative splicing events in other RNAi experiments. We also identified IRs that were confirmed in our SJ analysis. The proposed method used in our study can output the genomic coordinates of differentially used SJs and thus enable sequence motif search. Sequence motif search and gene function annotation analysis helped us infer the underlying mechanism in alternative splicing events. To further evaluate this method, we also applied the method to public RNA-seq data from human breast cancer (GSE45419) and the plant Arabidopsis (SRP008262). In conclusion, our study showed that DEXSeq can be adapted to differential analysis of SJs and IRs, which will facilitate the identification of alternative splicing events and provide insights into the molecular mechanisms of transcription processes and disease development.
منابع مشابه
Analyzing RNA-seq data for differential exon usage with the DEXSeq package
RNA-seq is a powerful tool for transcriptome analysis. It enables the discovery of novel transcript splice sites and isoforms, and there is interest in the quantitative comparison of exon usage between different conditions. For the analysis of differential expression between conditions, appropriate modeling of the experimental and biological variability is important, and such capabilities are o...
متن کاملDetecting differential usage of exons from RNA-seq data.
RNA-seq is a powerful tool for the study of alternative splicing and other forms of alternative isoform expression. Understanding the regulation of these processes requires sensitive and specific detection of differential isoform abundance in comparisons between conditions, cell types, or tissues. We present DEXSeq, a statistical method to test for differential exon usage in RNA-seq data. DEXSe...
متن کاملBioC2014: RNA-Seq workflow for differential gene expression
This lab will walk you through an end-to-end RNA-Seq differential expression workflow. We will start from the FASTQ files, align to the reference genome, prepare gene expression values as a count table by counting the sequenced fragments, perform differential gene expression analysis, and visually explore the results. This lab covers the basic introduction. For a more in-depth explanation of th...
متن کاملCSAMA 2014: RNA-Seq differential expression workflow
This lab will walk you through an end-to-end RNA-Seq differential expression workflow. We will start from the FASTQ files, align to the reference genome, prepare gene expression values as a count table by counting the sequenced fragments, perform differential gene expression analysis, and visually explore the results. This lab covers the basic introduction. For a more in-depth explanation of th...
متن کاملDetection and visualization of differential splicing in RNA-Seq data with JunctionSeq
Although RNA-Seq data provide unprecedented isoform-level expression information, detection of alternative isoform regulation (AIR) remains difficult, particularly when working with an incomplete transcript annotation. We introduce JunctionSeq, a new method that builds on the statistical techniques used by the well-established DEXSeq package to detect differential usage of both exonic regions a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015